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Introduction: The transfer function expressions for the transmission of small signal
amplitude and phase modulations through a resonant cavity are often quoted in the literature
without a derivation. The expressions are derived here; both un-normalized and normalized with
respect to the steady-state resultant voltage phasor. The un-normalized transfer functions when
applied to in-phase (I) and quadrature (Q) components are suitable for large signal analysis of
cavity turn-on transients.

In-Phase Component (or small signal amplitude) Modulation:

Assume that a current source is driving a cavity which is represented as a parallel RLC circuit
(see Appendix A for the impedance equations and Appendix B for the steady state vector
diagram). Furthermore, assume that this current source is amplitude modulated. The amplitude
modulation can be expressed as:

i(t)=1(1+acosm,,t) cosmt (1)

where | is considered the un-modulated current magnitude, a is the magnitude of the amplitude
modulation at frequency w,,, and wg. 1s the RF operating frequency. Using trigonometric

identities, (1) can be rewritten as:
. a
i(t)=1 -(cos el + E-[cos(a)RF + @, )t + cos(Wge —a)am)t]j . (2

Using phasor notation, the current can be written as i(t) = Re(fei”RFt) where the phasor 1 is
expressed as:

P= -(1 +%[ei‘“amt +e—"")am‘]j (3)

with j=+/—1. Thus, the amplitude modulation expressed in the right hand term of (3) can be

t

represented as two counter-rotating phasors, €' and e =" . These phasors rotate in opposite

directions at the modulation frequency.

Using a similar phasor notation, the cavity voltage can be represented as V(t) = Re(\7e"”’RFt ) If
the driving current, i(t), is applied to the cavity, the resulting voltage phasor is determined via
the cavity impedance by:

\7 = (Z(JCORF) +%[Z+ejwamt + Z_e_jwamt]j (4)



where

2" =72 + 2, = Z(jope + jo,,) (5)

Im

and
" =2y + ], =Z(jog — ja,) (6)

The right hand term of (4) relates the transformation of amplitude modulation of the driving

current into modulation of the cavity voltage. Using the definition of the complex exponential,
the right hand term of (4) can be expressed as:

V= I%- {[Z;e + jZ;n]-[cosa)amt + jsina)amt]+ [Zl;e + jZ;n]-[cosa)amt - jsina)amt]} (7)

V=1 %[ {[z;e +Zl{e]-cos a)amt—[Z;n —len]~sin @yt } + j{[Z;n +len]-cos a)amt—[ZI;e —de]-sin Wt }] ®)
By making use of the trigonometric identity,

Acos(wt+6,)—Bsin(wt-6;)=C cos(a)t + 6. ) )

where C =+ A>+B* and 6, :tan‘I% ,

the real and imaginary terms of (8) can be condensed resulting in

V=V, cos(@,t + )+ ]-V,cos(w,,t+d,) (10)

where

L4 =arg(z+27) (1)
and

g =argl-j-(27-27) (12
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where Z~ denotes the complex conjugate of Z ™.

Thus, it is now clear that amplitude modulations of the driving current are transmitted into in-
phase and quadrature modulations of the cavity voltage. This process can be described in terms
of the following transfer functions:

_V,(9) _Vo(9)
G; (S)_—II(S) and G;,(s) = .(s) (13)

where G, (S) denotes transmissions of in-phase driving current modulations to in-phase cavity

voltage modulations, G;,(s) denotes transmissions of in-phase driving current modulations to



quadruature cavity voltage modulations, and the LaPlace variable, s, is defined in terms of the
modulation frequency, S =i, .

Using equations, (5), (6), (11), and (12) the transfer functions can be expressed as:

Gu(9) = [2(j0me +9+2 (e -9)] (14)

qu(s)=—§[2<ijF +9)-Z" (joe -9)] (15)

Normalizing with respect to the un-modulated response, or the steady-state voltage phasor,
results in a set of normalized transfer functions:

Gl (9)= L[ 2Ue*9) 2 (o =9) | i
T2l Z(jow) 2T (joge)

GY(s) :_i Z(ja-)RF +5) Z*(*ja.)RF -S) 17)
! 2] Z(Joge) Z (Joge)

The above transfer function expressions can be expanded using the expression for the cavity
impedance,

R
@, —-$S
20R-s

» ST+20-S+w]

0

O

Z(s) = (18)

a,
$?+-2-s+@

@,

= L , which defines
T

The second expression in (18) utilizes the damping rate parameter, o =

the decay rate of the cavity voltage (electric field) impulse response.

However, simpler expressions for the transfer functions can be found if the approximated cavity
impedance expression is used. Using,

) R . . R
Z(jw) = (19) and Z'(jo)= (20)
1= 120, - o) 14220, - o)

a 1)

o o

equations (14)-(17) become:



oR-(s+0)

(8 s’ +20s+o’°(1+tan’ ¢,) 1)
R-o’ tan
G (5)= and ()
S"+20s+o0 (l+tan" ¢,)
os+o’(1+tan’

Gls)= oI AT g oy
S"+20s+o (I+tan” ¢,)
—otang, S
Gy (8) = ‘ (24)

s’ +20s+0o’(l+tan’ ¢,)

Often the expressions for the transfer functions make use of the Hermitian property,
Z(-w) = Z"(w) , of the cavity impedance. Thus, equations (14)-(17) are often written as:

Gu(9) = [2(s+ joe ) + 2G5 Jo )] 29)

Gy (5) =3 [Z(+ joe )~ Z(s— joge)] (26)

G-N(S):l Z(s+ijF)+Z(S_ijF) 7)
" 2| Z(joge) Z(— jore)

Gl (s) = ‘l[z(H IGpe ) _ 2~ J0e)

28
2| Z(joge) Z(_ja)RF):| (28)

However, care must be exercised when using these equations with the approximated cavity
impedance function since Z(—w) # Z" (w) when Z(w)is approximated by (19). Thus, if the
approximated cavity impedance function of (19) is used, the proper forms of the transfer
functions are (14)-(17) while properly substituting for Z " (@) with (20).



Quadrature-Component (or small signal phase) Modulation:

Using a similar process as used for describing amplitude modulations, the transfer functions for
quadrature-component modulation can be derived.

Quadrature-component (or small-signal phase) modulation can be expressed as:
Ig(t) =—a, cosw,,t-sinmpt  (18)

The use of the negative sign will become clear from the phasor notation which can be expressed
as:

i (t) = Re(i, e7) (19)
with
& H a jo, —jo,
i = | [TQ [t 4o t]j (20)
representing the modulating phasor.

Thus again, the modulating phasor is the sum of two counter-rotating phasors; except this time
they are both shifted by 90 degrees. It is the factor of j which has to be accounted for properly

to get the right sign for the transfer functions. Again, in general (if Z* # Z ") the resultant
modulation of the cavity voltage has an in-phase and quadrature component.

Again, the resultant cavity voltage modulation phasor can be expressed as:

a . )
§= j-(TQ[ZJreramt + z-e—""amt]] 1)
which becomes similar to (8) except for the factor of j,

V=] -[{[de + de]~cos a)amt—[Z;n —len]-sin Wt } + j~{[Z;n +len]-cos a)amt—[de —de]-sin Wt }] (22)

Again, if the resultant is written in terms of in-phase and quadrature components, then it is clear
from comparing (22) to (8) that the transfer functions for quadrature-component modulation are
identical to those for the in-phase component modulation except for the negative sign introduced

by the j° factor in the real term resulting from (22).

Gy(5) =Gy () and Gy (s)=Gy(s) (23)



Application:

Figure 1 on the right shows a
comparison between a reduced
model simulation and a full model
simulation. Both simulate the turn-
on transients of a parallel resonant
circuit voltage response to a
stepped driving current with a
frequency that is unequal to the
circuit resonant frequency. The
ciruit parameters simulated are
o, =27-53-10°, Aw=27-20-10°,
Q=3500, andR/Q=100. The

amplitude for the reduced model
simulation was determined by
taking the square root of the sum of
the squares of I and Q. The phase
was determined by taking the inverse
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Figure 1: Matlab simulation of the reduced model 1Q transfer
functions (red traces) compared to a full model simulation (blue

tangent of Q/I. trace).

Summary:

Although the transfer functions for 1Q modulations in a resonant circuit already exist in the
literature, the derivation is not often explained. Furthermore, the literature often states that the
transfer function expressions result from the unapproximated cavity impedance; leading one to
attempt to reduce the resulting fourth order equation to a second order equation. The expressions
in the literature are actually the result of using the approximated cavity impedance for which care
needs to be exercised in using the quoted formulas that exploit the Hermitian property of the
unapproximated cavity impedance. It is hoped that the derivation presented here will be useful
to those studying the transfer functions.
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Appendix A — Cavity Impedance Equations

Y = 1 + L + joC is the admittance of a parallel RLC circuit
R JoL
7 - 1_ joRL
Y —’RLC+ joL+R
—jw
7 = C1 — (A1)

—0'+——jo+—

RC LC
Using the following relations: @, = ! is the natural resonant frequency, and Q =®,RC 1is

°JLC

the quality factor, the impedance can be expressed as:

R .
0, - jo
Z= Q (A2)
R
CJo+ o]
Z= R (A3)

0

2 2
Multiplying numerator and denominator by 1+1Q [ Do —@ J gives,
010)

Z = [H[Q(%wjf D] .{1 +iQ[a)§w;w:02H (A4)

The second term can be represented by a complex exponential,

o,

1+iQ(a)§ _a)zj: Me’  (A5)

where the magnitude, M , is given as



M:\/1+(Q[“’5“’2D= L (a9)
o, cosd,

and the angle, ¢, , which is a function of @, satisfies

tan g, = Q[%j ~ 2Q% (A7)

0 (o}

where Aw = w, — ® and the approximation is found by using the first 2 terms of a Taylor Series

expansion in terms of @ .

Thus, the impedance can be expressed as

R

:1—i-tan¢z (48)

Z =Rcosg, €% . (A9)

In terms of the LaPlace variable, S = j® , the impedance can be written from (A2) as

@, S
Z(5)=—— 2, (Al0)
S +-2-S+a@;
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Appendix B — Steady-State Vector Diagram

The synchronous phase angle for below/(above) transition is defined as the +/(-) phase
of the beam relative to the positive/(negative) sloped zero-crossing of the RF voltage.

The beam image current phase angle is defined as the phase of the beam image current
relative to the phase of the RF voltage. It is equivalent to -/(+) {% + & } for

below/(above) transition. Thus, the beam image current phasor is written as
%H{%%}

A

— 1 el —
lp=1ge™ =1 e

The cavity impedance phase angle is defined as the phase of the RF cavity voltage
relative to the total cavity drive current. Thus, the total current, beam plus generator, is
represented as fT =1 e

The load impedance phase angle is defined as the phase of the RF generator current
relative to the RF cavity voltage. Thus, the generator current is represented as
Ig =1.e"

: The cavity voltage is considered to be at a reference phase of 0.

\Y

cav

R

the generator current required to produce V_, when the cavity is tuned to

resonance (when ¢, =0)

Thus, to make V_,, when the cavity is driven off resonance:

~V V : | i
IT _ Yeav _ cav e—|¢z — o e—'¢z (Bl)
Z Rcosg, cos ¢,




Now, since the total current is the sum of the generator plus beam image currents:

) ()i [zmﬁs } I )
e +l,e 2 1=—2_¢ (B2)
cos ¢,

separating into real and imaginary components:
Real components: Igcosg, —lgsings =1, (B3)
Imaginary components: Igsing, —/(+) lgcosgsy =—1 tangp, (B4)

Thus, given I, &, and V_, and using @, as a free parameter, the generator current, |5, and

cavity impedance angle, ¢,, can be determined. Alternatively, one can useg, as the free
parameter and thus determine |5 and ¢, .

Using ¢, as the free parameter:

From (B3) we obtain: | = o +lpsings _ ly(1+Ysings ) (B5)

cos ¢, cos ¢,

Then from (B4) we obtain:

tang, = —1c504 +|/ O 160805 _ (14 Y sing, Jtang, + /()Y cosd, (B6)

0

where Y = II—B (B7) is called the beam loading factor

0

Using ¢, as the free parameter:
Solving (B4) for I sing, and then dividing this by | cos¢, from (B3):

—tang, + /(=) Y cos ¢

B = (Y sing,)

(B8)

and then using (B5)

- I, (1+Y sing) (B9)
cos @,



Cavity Vector Diagram

Vcav: cavity voltage I GQD R ::C L C) lB

I G generator current

¢, : generator load angle Z(w) = Rcosg, -&'
IB: beam image current
¢S: synchronous phase angle

IT: total cavity current

IG Veaw =11 -2 lr =1g +1g
0,: cavity detuning angle
¢L VCav
I, = :current to make V,, when ¢, =0
cav
| . ~1(+)i| Zags | .
N T lce™ +l e L }: o g
cos ¢,
I .
B I, (1+Y sing) lg
lg=—"—"—"—"> Y=—
cos ¢, I,

tang, = —(1+Y sing )tang,_+/(=)Y cos g,

—tang, +/(-) Y cos ¢
(1+Y sing )

tan g =



